Abstract
We discuss comparatively local versus gauged Weyl symmetry beyond Standard Model (SM) and Einstein gravity and their geometric interpretation. The SM and Einstein gravity admit a natural embedding in Weyl integrable geometry which is a special limit of Weyl conformal (non-metric) geometry. The theory has a local Weyl scale symmetry but no associated gauge boson. Unlike previous models with such symmetry, this embedding is truly minimal i.e. with no additional fields beyond SM and underlying geometry. This theory is compared to a similar minimal embedding of SM and Einstein gravity in Weyl conformal geometry (SMW) which has a full gauged scale invariance, with an associated Weyl gauge boson. At large field values, both theories give realistic, Starobinsky–Higgs like inflation. The broken phase of the current model is the decoupling limit of the massive Weyl gauge boson of the broken phase of SMW, while the local scale symmetry of the current model is part of the larger gauged scale symmetry of SMW. Hence, the current theory has a gauge embedding in SMW. Unlike in the SMW, we note that in models with local scale symmetry the associated current is trivial, which is a concern for the physical meaning of this symmetry. Therefore, the SMW is a more fundamental UV completion of SM in a full gauge theory of scale invariance that generates Einstein gravity in the (spontaneously) broken phase, as an effective theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.