Abstract

This work is focused on the performance of three different standard-cell-based comparator topologies, considering ultra-low-voltage (ULV) operation. The main application scenarios in which standard-cell-based comparators can be exploited are considered, and a set of figures of merit (FoM) to allow an in-depth comparison among the different topologies is introduced. Then, a set of simulation testbenches are defined in order to simulate and compare the considered topologies implemented in both a 130 nm technology and a 28 nm FDSOI CMOS process. Propagation delay, power consumption and power–delay product are evaluated for different values of the input common mode voltage, as a function of input differential amplitude, and in different supply voltage and temperature conditions. Monte Carlo simulations to evaluate the input offset voltage under mismatch variations are also provided. Simulation results show that the performances of the different comparator topologies are strongly dependent on the input common mode voltage, and that the best values for all the performance figures of merit are achieved by the comparator based on three-input NAND gates, with the only limitation being its non-rail-to-rail input common mode range (ICMR). The performances of the considered comparator topologies have also been simulated for different values of the supply voltage, ranging from 0.3 V to 1.2 V, showing that, even if standard-cell-based comparators can be operated at higher supply voltages by scaling their performances accordingly, the best values of the FoMs are achieved for VDD = 0.3 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.