Abstract
The increasing demand for forest biomass for energy generation could be partially met by growing denser stands and use of fertilizer. Before this is done at large scale, more knowledge of the effects of stand density and fertilization on aboveground allocation patterns and stem form is needed. Therefore, effects of pre-commercial thinning (PCT) to 3000 stems ha−1, an unthinned dense control (C), and PCT combined with two levels of fertilization (100 kg ha−1 of nitrogen applied either during the establishment of the field experiment (F1) or annually (F2)) were examined in 23- to 26-year-old Scots pine (Pinus sylvestris L.) stands six years after the establishment of the field experiment. In total, 114 sample trees were harvested using destructive biomass sampling. The growth allocation and stem form of trees with diameter at breast height (DBH; 1.3 m height) >5.0 cm were not affected by either the PCT or fertilization. Small trees (DBH < 5 cm) in denser, unthinned control plots had more slender stems (lower DBH/height ratios) and allocated less growth to branches and foliage than trees in PCT plots. Fertilization had little effect on the stem form and growth allocation of the smallest trees. Therefore, effects of stem density and fertilization on stem form and growth allocation to foliage were only found for small suppressed trees, and the treatments had very little influence on dominant and codominant trees.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have