Abstract

Many oak decline events have been reported within the past century in the eastern U.S., and important causal factors often differ among them. Coincident with a recent decline event in upland oak-dominant forests of Arkansas, Missouri, and Oklahoma was an unexpected outbreak of a native cerambycid beetle, Enaphalodes rufulus (Haldeman), the red oak borer. A large range in estimates of oak mortality throughout affected forests was presumably due to variation in species composition, where oak-dominant areas experienced the greatest mortality. We chose eight sites across the Ozark and Ouachita National Forests of Arkansas, similar both topographically and by oak dominance, to determine if other stand or tree characteristics were important factors in variation of E. rufulus infestations across these forests. At each site, we sampled ∼125 dead, declining or healthy host Quercus rubra L., northern red oak. We created an estimate of the E. rufulus population level at each site during the recent outbreak using counts of dated larval gallery scars within a subset ( n = 120) of all Q. rubra sampled ( n = 976). We used classification tree partitioning to determine host tree characteristics that differed among dead, declining, and healthy Q. rubra. We also used classification tree partitioning, followed by logistic regression to determine stand characteristics that varied significantly among high, moderate and low infestation stands as well as between forests. Models indicated that trees which died were smallest, grew the least during the borer outbreak, and were apparently suppressed. These dying trees were likely poor competitors for resources, allowing neighboring survivors to experience a growth release during the E. rufulus outbreak. Larval survivorship was higher in trees which died, though larval densities were not greatest within these trees, which suggests that resistance in these individuals was compromised. At the stand level, differences between forests were apparently more important than those due to borer infestation. E. rufulus populations were higher at sites with lower Q. rubra basal area. This reduced basal area was likely a result of greater Q. rubra mortality at these sites during the borer outbreak in the early 2000s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call