Abstract

Microbial fuel cells (MFCs) have various potential applications. However, anode is a main bottleneck that limits electricity production performance of MFCs. Herein, we developed a novel anode based on a stainless steel cloth (SC) modified with carbon nanoparticles of Chinese ink (CI) using polypyrrole (PPy) as a building block (PPy/CI/SC). After modification, PPy/CI/SC showed a 30% shorten in start-up time (36.4 ± 3.3 h vs. 52.3 ± 1.8 h), 33% increase in the maximum current (12.4 ± 1.4 mA vs. 9.3 ± 0.95 mA), and 2.3 times higher in the maximum power density of MFC (61.9 mW/m2vs. 27.3 mW/m2), compared to Ppy/SC. Experimental results revealed that carbon nanoparticles were able to cover SC uniformly, owing to excellent dispersibility of carbon nanoparticles in CI. The attachment of carbon nanoparticles formed a fluffy layer on SC increased the electrochemically-active surface area by 1.9 times to 44.5 cm2. This enhanced electron transfer between the electrode and bacteria. Further, embedding carbon nanoparticles into the PPy layer significantly improved biocompatibility as well as changed functional group contents, which were beneficial to bacteria adhesion on electrodes. Taking advantage of high mechanical strength and good conductivity, a large-size PPy/CI/SC was successfully prepared (50 × 60 cm2) demonstrating a promising potential in practical applications. This simple fabrication strategy offers a new idea of developing low cost and scalable electrode materials for high-performance energy harvesting in MFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.