Abstract

Purpose The purpose of this paper is to investigate the two-dimensional stagnation-point flow, heat and mass transfer of an incompressible upper-convected Oldroyd-B MHD nanofluid over a stretching surface with convective heat transfer boundary condition in the presence of thermal radiation, Brownian motion, thermophoresis and chemical reaction. The process of heat and mass transfer based on Cattaneo–Christov double-diffusion model is studied, which can characterize the features of thermal and concentration relaxations factors. Design/methodology/approach The governing equations are developed and similarly transformed into a set of ordinary differential equations, which are solved by a newly approximate analytical method combining the double-parameter transformation expansion method with the base function method (DPTEM-BF). Findings An interesting phenomenon can be found that all the velocity profiles first enhance up to a maximal value and then gradually drop to the value of the stagnation parameter, which indicates the viscoelastic memory characteristic of Oldroyd-B fluid. Moreover, it is revealed that the thickness of the thermal and mass boundary layer is increasing with larger values of thermal and concentration relaxation parameters, which indicates that Cattaneo–Christov double-diffusion model restricts the heat and mass transfer comparing with classical Fourier’s law and Fick’s law. Originality/value This paper focuses on stagnation-point flow, heat and mass transfer combining the constitutive relation of upper-convected Oldroyd-B fluid and Cattaneo–Christov double diffusion model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call