Abstract

Currently, staging the degree of liver fibrosis predominantly relies on liver biopsy, a method fraught with potential risks, such as bleeding and infection. With the rapid development of medical imaging devices, quantification of liver fibrosis through image processing technology has become feasible. Stacking technology is one of the effective ensemble techniques for potential usage, but precise tuning to find the optimal configuration manually is challenging. Therefore, this paper proposes a novel EVO-MS model-a multiple stacking ensemble learning model optimized by the energy valley optimization (EVO) algorithm to select most informatic features for fibrosis quantification. Liver contours are profiled from 415 biopsied proven CT cases, from which 10 shape features are calculated and inputted into a Support Vector Machine (SVM) classifier to generate the accurate predictions, then the EVO algorithm is applied to find the optimal parameter combination to fuse six base models: K-Nearest Neighbors (KNNs), Decision Tree (DT), Naive Bayes (NB), Extreme Gradient Boosting (XGB), Gradient Boosting Decision Tree (GBDT), and Random Forest (RF), to create a well-performing ensemble model. Experimental results indicate that selecting 3-5 feature parameters yields satisfactory results in classification, with features such as the contour roundness non-uniformity (Rmax), maximum peak height of contour (Rp), and maximum valley depth of contour (Rm) significantly influencing classification accuracy. The improved EVO algorithm, combined with a multiple stacking model, achieves an accuracy of 0.864, a precision of 0.813, a sensitivity of 0.912, a specificity of 0.824, and an F1-score of 0.860, which demonstrates the effectiveness of our EVO-MS model in staging the degree of liver fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.