Abstract
Abstract We investigate the staggered flux state in the half-filled extended Hubbard ladder using the strong-coupling perturbation theory. The staggered flux state has long-range order of currents on rungs flowing in the alternating direction. We derive a low-energy effective Hamiltonian and study an Ising-type quantum phase transition between the staggered flux state and the d-wave-pairing Mott insulating state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have