Abstract
Simple SummaryThe stage of a tumor during cancer intervention is the most crucial factor that determines the treatment regimen. Several bioactive natural compounds have shown potential to inhibit prostate cancer growth and progression; however, there is a dearth of studies that explore their efficacy at different stages of tumorigenesis. This knowledge gap prevents researchers from fully exploiting the anti-cancer potential of these beneficial compounds. Accordingly, our present study focused on explicating the ‘stage-specific’ efficacy of the bioactive food component ‘inositol hexaphosphate (IP6, phytic acid)’ against PCa initiation, growth, and progression in the transgenic adenocarcinoma of the mouse prostate TRAMP model. Results indicated that IP6 feeding during initial stages of cancer development prevents progression of prostatic intraepithelial neoplasia lesions to adenocarcinoma, and IP6 feeding during late stage of the disease reduces tumor growth and prevents its progression to advanced stage of the disease. Thus, IP6 intervention is beneficial during all stages of prostate tumorigenesis.Herein, we assessed the stage-specific efficacy of inositol hexaphosphate (IP6, phytic acid), a bioactive food component, on prostate cancer (PCa) growth and progression in a transgenic mouse model of prostate cancer (TRAMP). Starting at 4, 12, 20, and 30 weeks of age, male TRAMP mice were fed either regular drinking water or 2% IP6 in water for ~8–15 weeks. Pathological assessments at study endpoint indicated that tumor grade is arrested at earlier stages by IP6 treatment; IP6 also prevented progression to more advanced forms of the disease (~55–70% decrease in moderately and poorly differentiated adenocarcinoma incidence was observed in advanced stage TRAMP cohorts). Next, we determined whether the protective effects of IP6 are mediated via its effect on the expansion of the cancer stem cells (CSCs) pool; results indicated that the anti-PCa effects of IP6 are associated with its potential to eradicate the PCa CSC pool in TRAMP prostate tumors. Furthermore, in vitro assays corroborated the above findings as IP6 decreased the % of floating PC-3 prostaspheres (self-renewal of CSCs) by ~90%. Together, these findings suggest the multifaceted chemopreventive-translational potential of IP6 intervention in suppressing the growth and progression of PCa and controlling this malignancy at an early stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.