Abstract
Recent models for cross-modal retrieval have benefited from an increasingly rich understanding of visual scenes, afforded by scene graphs and object interactions to mention a few. This has resulted in an improved matching between the visual representation of an image and the textual representation of its caption. Yet, current visual representations overlook a key aspect: the text appearing in images, which may contain crucial information for retrieval. In this paper, we first propose a new dataset that allows exploration of cross-modal retrieval where images contain scene-text instances. Then, armed with this dataset, we describe several approaches which leverage scene text, including a better scene-text aware cross-modal retrieval method which uses specialized representations for text from the captions and text from the visual scene, and reconcile them in a common embedding space. Extensive experiments confirm that cross-modal retrieval approaches benefit from scene text and highlight interesting research questions worth exploring further. Dataset and code are available at europe.naverlabs.com/stacmr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.