Abstract
A cross-modal image retrieval that explicitly considers semantic relationships between images and texts is proposed. Most conventional cross-modal image retrieval methods retrieve the target images by directly measuring the similarities between the candidate images and query texts in a common semantic embedding space. However, such methods tend to focus on a one-to-one correspondence between a predefined image-text pair during the training phase, and other semantically similar images and texts are ignored. By considering the many-to-many correspondences between semantically similar images and texts, a common embedding space is constructed to assure semantic relationships, which allows users to accurately find more images that are related to the input query texts. Thus, in this paper, we propose a cross-modal image retrieval method that considers semantic relationships between images and texts. The proposed method calculates the similarities between texts as semantic similarities to acquire the relationships. Then, we introduce a loss function that explicitly constructs the many-to-many correspondences between semantically similar images and texts from their semantic relationships. We also propose an evaluation metric to assess whether each method can construct an embedding space considering the semantic relationships. Experimental results demonstrate that the proposed method outperforms conventional methods in terms of this newly proposed metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.