Abstract
Supersecondary structure (SSS) refers to specific geometric arrangements of several secondary structure (SS) elements that are connected by loops. The SSS can provide useful information about the spatial structure and function of a protein. As such, the SSS is a bridge between the secondary structure and tertiary structure. In this chapter, we propose a stacking-based machine learning method for the prediction of two types of SSSs, namely, β-hairpins and β-α-β, from the protein sequence based on comprehensive feature encoding. To encode protein residues, we utilize key features such as solvent accessibility, conservation profile, half surface exposure, torsion angle fluctuation, disorder probabilities, and more. The usefulness of the proposed approach is assessed using a widely used threefold cross-validation technique. The obtained empirical resultshows that the proposed approach is useful and prediction can be improved further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.