Abstract

In this chapter we provide a survey of protein secondary and supersecondary structure prediction using methods from machine learning. Our focus is on machine learning methods applicable to β-hairpin and β-sheet prediction, but we also discuss methods for more general supersecondary structure prediction. We provide background on the secondary and supersecondary structures that we discuss, the features used to describe them, and the basic theory behind the machine learning methods used. We survey the machine learning methods available for secondary and supersecondary structure prediction and compare them where possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.