Abstract
With no further shrink of device size, three dimensional (3D) chip stacking by Through-Silicon-VIA (TSV) has been identified as an effective way to achieve better performance in speed and power. However, such solution inevitably encounters challenges in thermal dissipation since stacked dies generate significant amount of heat per unit volume. We leverage an integrated architecture of stacked-signal-TSVs to minimize temperature with small wiring overhead. Based on the structure of stacked signal TSV, a two-stage TSV locating algorithm in global routing is designed. By this TSV locating algorithm, we demonstrate that our stacking signal TSV structure is able to reduce 17% temperature with 4% wiring overhead and 3% performance loss calculated by 3D Elmore delay model. Compared to a previous work by Cong and Zhang [1] where additional thermal TSVs are inserted, our experimental results have in average 23% less TSVs than Cong and Zhang's [1] with the same temperature constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.