Abstract
Uncooled, long-wavelength photovoltaic detectors suffer from poor quantum efficiency and low differential resistance. The problem can be solved by the use of stacked, multiple heterojunction-photovoltaic cells with thin absorber regions. We report here numerical simulation and optimization of the stacked, multiple Hg1−xCdxTe heterojunction cells used for detection of 10.6-µm infrared (IR) radiation, operating as zero-bias photovoltaic devices or Auger-suppressed photodiodes. It is shown that the devices can be used as high-performance and fast-response detectors of long-wavelength radiation operating at ambient temperature with detectivities larger by more than one order of magnitude than that of the present practical devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have