Abstract

An extremely high optical absorbing film made of alternating aluminum–silver layers was used as cathode in polymeric light-emitting devices (PLEDs). Physical properties of the cathodes were characterized by I–V measurement, atomic force microscopy, and x-ray photoemission spectroscopy. As a result of the slow evaporation rate, each pair of the aluminum–silver layer was shown to be in the form of aluminum–aluminum oxide nanoclusters embedded in an amorphous charge conducting network of silver. The nanoclusters helped to absorb and scatter the ambient light effectively. The use of four alternating layers structure in conventional PLEDs demonstrated 126% enhancement of contrast under 1000lx ambient illumination. The I–V characteristics of the black cathode PLEDs remained intact when compared with reference PLEDs. This technology offers precise control of the cathode quality in terms of its reflectivity and conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.