Abstract
Ultrasound imaging has been widely used for tumor detection and diagnosis. In ultrasound based computer-aided diagnosis, feature representation is a crucial step. In recent years, deep learning (DL) has achieved great success in feature representation learning. However, it generally suffers from the small sample size problem. Since the medical datasets usually have small training samples, texture features are still very commonly used for small ultrasound image datasets. Compared with the commonly used DL algorithms, the newly proposed deep polynomial network (DPN) algorithm not only shows superior performance on large scale data, but also has the potential to learn effective feature representation from a relatively small dataset. In this work, a stacked DPN (S-DPN) algorithm is proposed to further improve the representation performance of the original DPN, and S-DPN is then applied to the task of texture feature learning for ultrasound based tumor classification with small dataset. The task tumor classification is performed on two image dataset, namely the breast B-mode ultrasound dataset and prostate ultrasound elastography dataset. In both cases, experimental results show that S-DPN achieves the best performance with classification accuracies of 92.40±1.1% and 90.28±2.78% on breast and prostate ultrasound datasets, respectively. This level of accuracy is significantly superior to all other compared algorithms in this work, including stacked auto-encoder and deep belief network. It suggests that S-DPN can be a strong candidate for the texture feature representation learning on small ultrasound datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.