Abstract
Sub/near-threshold computing has been proposed for ultra-low power applications. FinFET devices are considered as an alternative for bulk CMOS devices due to the superior characteristics, which make FinFET an excellent candidate for ultra-low power designs. In this paper, we first present an improved analytical FinFET model covering both sub- and near-threshold regimes. This model accurately captures the drain current as a function of both the gate and drain voltages. Based on the accurate FinFET model, we provide a detailed analysis on stack sizing of FinFET logic cells, and derive the optimal stack depth in FinFET circuits. We also provide a delay optimization framework for the FinFET circuits in the sub/near-threshold region, based on the stack sizing analysis. To the best of our knowledge, this is the first work that provides in-depth analysis of the stack sizing of FinFET logic cells in the sub/near-threshold region based on the accurate FinFET modeling. Experimental results on the 32nm Predictive Technology Model for FinFET devices demonstrate the effectiveness of the proposed optimization framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.