Abstract

In the course of gaining new insights into the secondary metabolite profile of various Stachybotrys strains, in particular concerning triprenyl phenol-like compounds, so far, unknown metabolites with analogous structural features were discovered. Three novel meroterpenoids containing a chromene ring moiety, namely stachybotrychromenes A–C, were isolated from solid culture of the filamentous fungus Stachybotrys chartarum DSMZ 12880 (chemotype S). Their structures were elucidated by means of comprehensive spectroscopic analysis (1D and 2D NMR, ESI-HRMS, and CD) as well as by comparison with spectroscopic data of structural analogues described in literature. Stachybotrychromenes A and B exhibited moderate cytotoxic effects on HepG2 cells after 24 h with corresponding IC50 values of 73.7 and 28.2 μM, respectively. Stachybotrychromene C showed no significant cytotoxic activity up to 100 μM. Moreover, it is noteworthy that stachybotrychromenes A–C are produced not only by S. chartarum chemotype S but also S. chartarum chemotype A and Stachybotrys chlorohalonata.

Highlights

  • The fungal genus Stachybotrys is ubiquitously present in the environment, especially on commodities rich in cellulose, such as straw, wood, and paper as well as gypsum board, and was first isolated from a moldy wallpaper in Prague (Bisby 1943)

  • The crude extract was fractionated by silica gel column chromatography and semi-preparative RP-HPLCUV to yield compounds 1–3

  • Its molecular formula was determined to be C23H30O3 by ESIHRMS ([M-H]− m/z 353.2115, calc. 353.2122), corresponding to the 1H and 13C nuclear magnetic resonance (NMR) data (Table 1) and HSQC spectrum, which indicated nine degrees of unsaturation

Read more

Summary

Introduction

The fungal genus Stachybotrys is ubiquitously present in the environment, especially on commodities rich in cellulose, such as straw, wood, and paper as well as gypsum board, and was first isolated from a moldy wallpaper in Prague (Bisby 1943). Phenylspirodrimanes are part of the group of triprenyl phenols, which in turn belong to the broad group of meroterpenoids. The latter represent natural products whose molecular structures contain moieties originating from the polyketide pathway as well the terpenoid pathway (Geris and Simpson 2009; Matsuda and Abe 2016). This structurally unique class of substances shows a broad diversity of biological activities. We describe the isolation and structure elucidation and give first insights into cytotoxicity of these compounds

Materials and methods
Results and discussion
Conflict of interest None
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.