Abstract

Three pairs of enantiomeric neolignans 1a/1b–3a/3b were isolated from the stems of Picrasma quassioides, and separated successfully by chiral-phase HPLC. Their structures were established by comprehensive spectroscopic analyses as well as ECD spectroscopy. The in vitro cytotoxicity of the isolates was evaluated against human hepatocellular carcinoma HepG2 and Hep3B cells. Among them, 1 and its enantiomers 1a/1b, 3 and 3a/3b displayed similar cytotoxicity in pair-wise comparison against HepG2 and Hep3B cells, and the similar effects of 2 and 2a/2b were found in Hep3B cells. Interestingly, 2a and 2b had different cytotoxic activities on HepG2 cells with IC50 values of 35.6 μM and 104.4 μM, respectively. In addition, 2 exerted middle cytotoxicity against HepG2 cells with an IC50 value of 78.6 μM. The different cytotoxicity between enantiomers 2a and 2b attracted our interest. To investigate the underlying mechanisms responsible for the distinct cytotoxicity, we further assessed the effects of 2a and 2b on cell cycle distribution, cell apoptosis and reactive oxygen species (ROS) generation. The results indicated that 2a had more significant effect than 2b on apoptosis induction and ROS generation, but both had no obvious effect on cell cycle of HepG2 cells. It is concluded that the different configurations of 2a/2b determined the enantioselective cytotoxicity on HepG2 cells through apoptosis induction and ROS generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.