Abstract

We propose a novel collocated projection method for solving the incompressible Navier-Stokes equations with arbitrary boundaries. Our approach employs non-graded octree grids, where all variables are stored at the nodes. To discretize the viscosity and projection steps, we utilize supra-convergent finite difference approximations with sharp boundary treatments. We demonstrate the stability of our projection on uniform grids, identify a sufficient stability condition on adaptive grids, and validate these findings numerically. We further demonstrate the accuracy and capabilities of our solver with several canonical two- and three-dimensional simulations of incompressible fluid flows. Overall, our method is second-order accurate, allows for dynamic grid adaptivity with arbitrary geometries, and reduces the overhead in code development through data collocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call