Abstract

We stabilize nematic droplets with handles against surface tension-driven instabilities, using a yield-stress material as outer fluid, and study the complex nematic textures and defect structures that result from the competition between topological constraints and the elasticity of the nematic liquid crystal. We uncover a surprisingly persistent twisted configuration of the nematic director inside the droplets when tangential anchoring is established at their boundaries, which we explain after considering the influence of saddle splay on the elastic free energy. For toroidal droplets, we find that the saddle-splay energy screens the twisting energy, resulting in a spontaneous breaking of mirror symmetry; the chiral twisted state persists for aspect ratios as large as ∼20. For droplets with additional handles, we observe in experiments and computer simulations that there are two additional -1 surface defects per handle; these are located in regions with local saddle geometry to minimize the nematic distortions and hence the corresponding elastic free energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.