Abstract

The variance targeting estimator (VTE) for generalized autoregressive conditionally heteroskedastic (GARCH) processes has been proposed as a computationally simpler and misspecification-robust alternative to the quasi-maximum likelihood estimator (QMLE). In this paper we investigate the asymptotic behavior of the VTE when the stationary distribution of the GARCH process has infinite fourth moment. Existing studies of historical asset returns indicate that this may be a case of empirical relevance. Under suitable technical conditions, we establish a stable limit theory for the VTE, with the rate of convergence determined by the tails of the stationary distribution. This rate is slower than that achieved by the QMLE. The limit distribution of the VTE is nondegenerate but singular. We investigate the use of subsampling techniques for inference, but find that finite sample performance is poor in empirically relevant scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.