Abstract
The asymptotic distribution of the quasi-maximum likelihood (QML) estimator is established for generalized autoregressive conditional heteroskedastic (GARCH) processes, when the true parameter may have zero coefficients. This asymptotic distribution is the projection of a normal vector distribution onto a convex cone. The results are derived under mild conditions. For an important subclass of models, no moment condition is imposed on the GARCH process. The main practical implication of these results concerns the estimation of overidentified GARCH models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have