Abstract

The development of visible light-responsive photocatalytic membranes (vis-PMs) has opened a promising direction in water purification field. Herein, supramolecular aggregates from cyanuric acid (C), melamine (M), and urea (U) in dimethyl sulfoxide (DMSO) were used to prepare the porous carbon nitride nanosheet (MCU-C3N4) with excellent photocatalytic performance. A sort of 3D heterostructure PMs consisting of MCU-C3N4 and carbon nanotube (CNTs) interposed into graphene oxide (GO) on the PVDF membrane was firstly fabricated by the layer-by-layer (LbL) assembly method, in which CNTs/MCU-C3N4/GO material was immobilized on the polyelectrolytes (PE) modified PVDF based on their electrostatic attractions. Such PMs with abundant nano-channels had excellent mechanical strength, satisfactory water permeability (14.35 L m−2 h−1 bar−1) and synergetic removal efficiency of rhodamine B (RhB, 98.31%) in long -term operation, relative to the pristine GO membrane and MCU-C3N4/GO membrane fabricated by the same method. In addition, such PMs also exhibited the satisfactory tetracycline hydrochloride (TC) removal rate (84.81%) under visible light irradiation. Construction and performance of such carbon-based PMs might provide guidance for development of vis-PMs in terms of bonding strength, multidimensional morphology and water purification application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call