Abstract

Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged) on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ 13C and δ 15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes) and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ 13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ 13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians’ ability to adjust to different environmental conditions.

Highlights

  • Studying the diet of individuals within a community provides key ecological insight about food web structure essential to understand trophic relationships, ecological roles, and niche partitioning [1,2,3]

  • The experimental procedures and euthanasia of tadpoles were conducted at Reserva Biológica de Doñana, CSIC, following protocols approved by the Institutional Animal Care and Use Committee (IACUC) at CSIC

  • We found higher δ15N values in P. cultripes and T. pygmaeus, and the lowest values in P. perezi

Read more

Summary

Introduction

Studying the diet of individuals within a community provides key ecological insight about food web structure essential to understand trophic relationships, ecological roles, and niche partitioning [1,2,3]. The diet of anuran larvae has seldom been described and actual direct information about diet composition has only been described for a limited number of species [20] Instead, their trophic niche has rather been inferred from their mouth morphology or their most frequent position in their aquatic habitats [17,20,24]. Tadpole morphology shows a wide spectrum of feeding specializations, which allows classifying them into functional groups, ranging from typical herbivorous feeding on phytoplankton to cannibalistic species, including species with endotrophic larvae that entirely rely on yolk [17,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call