Abstract

The lacustrine carbonate and travertine (tufa) deposits of ancient Lake Creede preserve a remarkable record of the isotopic evolution of the lake. That record indicates that the δ 1 8 O of the lake water, and by analogy its salinity, evolved through evaporation. Limited and less reliable data on hydrous minerals and fluid inclusions in early diagenetic carbonates indicate that the δD of the lake waters also evolved through evaporation. The isotope data place restrictions on models of the physical limnology of the lake and its evolution. The closed-basin Lake Creede formed shortly after collapse of the 26.9 Ma Creede caldera. Throughout most of its history it occupied the northern three quarters of the moat between the resurgent dome and wall of the caldera. The Creede Formation was deposited in the basin, dominantly as lacustrine sediments. Travertine mounds inter-finger with Creede Formation sediments along the inner and outer margins of the lake basin. An estimated one-half of the original thickness of the Creede Formation has been lost mainly to erosion although scattered remnants of the upper portion remain on the caldera walls. Two diamond core holes (CCM-1 and CCM-2) sampled the uneroded portion of the Creede Formation as part of the U.S. Continental Drilling Program. Volcaniclastic material, including tuff units deposited directly into the lake and ash washed in from the watershed, compose the main lithologies of the Creede Formation. These volcaniclastic strata were produced by episodic ring-fracture volcanism. Lacustrine carbonates make up about 15% of the section sampled by drill core. They occur as 1 mm to 2 cm low-Mg calcite laminae alternating with siliciclastic laminae in scattered intervals throughout the preserved section. The carbonate laminae are accumulations of 5-20 μm crystallites (microsparites) and brine shrimp fecal pellets (peloids) composed mainly of microsparite particles. Low-Mg calcite also occurs as an early diagenetic replacement of gypsum or ikaite (CaCO 3 .6H 2 O) crystals grown displacively in the muds and silts near the water-sediment interface (rice grains). Other studies indicate that aragonite was the original CaCO3 precipitate forming the microsparite and peloidal laminae and that it converted to calcite during burial diagenesis. Samples from CCM-2 and nearby outcrop do not appear to have undergone significant isotope exchange during recrystallization. Samples from CCM-1 and nearby outcrop, however, appear to have undergone extensive oxygen isotope exchange with meteoric water-dominated fluids possibly during a local 17.6 Ma hydrothermal event. The δ 1 8 O-δ 1 3 C data set produced by microsampling of individual carbonate lamellae and rice grains is exceptional in several aspects and provides important clues concerning the evolution of limnologic structure of the lake and its chemical and isotopic composition. Travertine and ikaite pseudomorphs in travertine deposits extend the record an additional 330 m above the collar of CCM-2. The δ 1 8 O values on CCM-2 samples range from 10.4‰ to 37.3‰ and δ 1 3 C values range from -10.8‰ to 9.6‰. The data fall into two distinct groups, a covariant group and an invariant group. The covariant group shows a strong negative covariance and a large range of δ 1 8 O and δ 1 3 C values. The negative covariance is opposite that normally reported for lacustrine carbonates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call