Abstract

The Oligocene Creede Formation is an exceptionally well-preserved intracaldera sedimentary sequence within a large resurgent caldera. The tuffaceous, epiclastic, and limestone deposits observed in surface exposures and Continental Scientific Drilling Program (CSDP) core provide a record of depositional and mineral-water interaction processes following caldera collapse. The authigenic mineral distributions also provide information regarding the role of the Creede Formation in the ancient Creede hydrothermal system. The basal part of the Creede Formation is characterized by interbedded calderawall-derived debris-flow breccias, alluvial, and shallow lacustrine deposits. This unit is succeeded by deep-water lacustrine beds that constitute the bulk of the Creede Formation. Interbedded fallout tuffs from intracaldera volcanic eruptions significantly affected lacustrine sedimentation patterns and provide a means of basin-wide correlation. Carbonate minerals were deposited as travertine at spring orifices and as suspension-fallout (micrite and micritic peloids) laminae across the lake bottom. The travertine accumulations circumscribe the margins of the moat basin and probably outline the structural margin of the caldera. Most of the detrital sediment within the Creede strata was derived from reworking of Fisher Quartz Latite fallout ash and erosion of the caldera walls. Calcareous and tuffaceous siltstone intraclasts are common in most coarse-grained lacustrine lithologies, especially in beds deposited after the emplacement of the H fallout tuff. Most of the identifiable ash-flow tuff lithic fragments in the coarser grained beds can be ascribed to one of the Carpenter Ridge Tuffs or the Wason Park Tuff. Fragments from a variety of intermediate composition lavas are also common in most beds. Fragments of crystal-rich ash-flow tuff units are generally less abundant, although clasts of Snowshoe Mountain Tuff and Fish Canyon Tuff are locally present in various parts of the caldera. Clasts of tuffs associated with formation of the San Luis caldera may be present in the lithic composition of Creede sediments, although confirmation awaits more definitive petrographic analysis of the Creede Formation and San Luis caldera ash-flow tuffs. The relative rarity of Snowshoe Mountain Tuff in the Creede Formation, even in the upper part of the section, is surprising and alludes to the unusual character of this ash-flow tuff unit. Hydrolysis and dissolution of the ash are interpreted to have led to formation of smectite, phillipsite(?), clinoptilolite, erionite, potassium feldspar, and quartz during burial diagenesis under a high geothermal gradient. The formation of phillipsite is inferred from pseudomorphic structures and may reflect increased alkalinity in the lake waters during the latter part of the lake history. The effects of two major low-temperature hydrothermal events are superimposed on diagenesis. The Antlers Park event resulted in replacement of the smectite and zeolite diagenetic assemblage by analcime, chlorite, and chlorite/smectite mixed-layered clay in the northwestern part of the moat. The Creede hydrothermal event is interpreted to have produced various silica minerals, illite, and potassium feldspar observed above 400 m in the formation in the northeastern part of the basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.