Abstract

This paper deals with aircraft autoland control in the presence of wind disturbances and actuator faults. To solve this problem, a fault-tolerant trajectory tracking controller is presented to autoland a commercial aircraft. Firstly, the dynamics models of the aircraft with faults and winds are built. Secondly, the stable inversion based fault-tolerant autolanding control architecture is proposed. The stable inversion control is used to improve output tracking precision. The H_∞ control is applied for robust stability against uncertainties caused by wind disturbances and the faults. Compare with common fault-tolerant autolanding control, the stable inversion based fault-tolerant autolanding control has more robust capability including stabilizing the non-minimum phase system. Finally, two scenario simulations are carried out for automatic landing control of a large civil aircraft under winds and elevator failures. The results indicate that the proposed stable inversion based fault-tolerant autolanding controller has better tracking performances than those of the stable inversion control and fault-tolerant autolanding control, even in control surface faults and large winds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call