Abstract

AbstractDry reforming of methane (DRM), the conversion of carbon dioxide and methane into syngas, offers great promise for the recycling of CO2. However, fast catalyst deactivation, especially at the industrially required high pressure, still hampers this process. Here we present a comprehensive study of DRM operation at high pressure (7–28 bars). Our results demonstrate that, under equimolar CH4 : CO2 mixtures, coke formation is unavoidable at high pressures for all catalysts under study. However, under substoichiometric CH4 : CO2 ratios (1 : 3), a stable high pressure operation can be achieved for most catalysts with no sign of deactivation for at least 60 hours at 14 bars, 800 °C and 7500 h−1. In addition to the enhanced stability, under these conditions, the amount of CO2 abated per mol of CH4 fed increases by a 50 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.