Abstract

We have created PMMA-CNT matrices by embedding opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with poly(methyl methacrylate) (PMMA). These PMMA-CNT matrices are excellent electron field emitters with an emission threshold field of 1.675 V/μm, more than 2-fold lower that that of the as-grown sample. In addition, the emission site density from these matrices is high, merely filling up the entire sample surface. Emission stability test at ∼1.35 mA/cm(2) was performed continuously for 40 h with no significant degradation. On the basis of our theoretical simulation and hypothetical modeling, we attribute these performances to the reduced screening effect and fewer Joule heatings due to the shorter effective transport distance of the electrons in MWCNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.