Abstract

Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 °C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreatred devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.