Abstract

Radial basis function (RBF) approximation has the potential to provide spectrally accurate function approximations for data given at scattered node locations. For smooth solutions, the best accuracy for a given number of node points is typically achieved when the basis functions are scaled to be nearly flat. This also results in nearly linearly dependent basis functions and severe ill-conditioning of the interpolation matrices. Fornberg, Larsson, and Flyer recently generalized the RBF-QR method to provide a numerically stable approach to interpolation with flat and nearly flat Gaussian RBFs for arbitrary node sets in up to three dimensions. In this work, we consider how to extend this method to the task of computing differentiation matrices and stencil weights in order to solve partial differential equations. The expressions for first and second order derivative operators as well as hyperviscosity operators are established, numerical issues such as how to deal with non-unisolvency are resolved, and the accuracy and computational efficiency of the method are tested numerically. The results indicate that using the RBF-QR approach for solving PDE problems can be very competitive compared with using the ill-conditioned direct solution approach or using variable precision arithmetic to overcome the conditioning issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.