Abstract

• We propose the radial basis function (RBF) approximation of scattered data. • Approximation is based on the distance between a given point and a reference point. • The set of reference points is specified by a user. • Method returns the approximating function which is represented as a sum of M RBFs. • Experimental results show that proposed RBF approximation gives the best results. Approximation of scattered data is often a task in many engineering problems. The radial basis function (RBF) approximation is appropriate for large scattered (unordered) datasets in d -dimensional space. This approach is useful for a higher dimension d > 2, because the other methods require the conversion of a scattered dataset to an ordered dataset (i.e. a semi-regular mesh is obtained by using some tessellation techniques), which is computationally expensive. The RBF approximation is non-separable, as it is based on the distance between two points. This method leads to a solution of linear system of equations (LSE) Ac = h . In this paper several RBF approximation methods are briefly introduced and a comparison of those is made with respect to the stability and accuracy of computation. The proposed RBF approximation offers lower memory requirements and better quality of approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.