Abstract
We study three graph complexes related to the higher genus Grothendieck–Teichmüller Lie algebra and diffeomorphism groups of manifolds. We show how the cohomology of these graph complexes is related, and we compute the cohomology as the genus g tends to infty . As a byproduct, we find that the Malcev completion of the genus g mapping class group relative to the symplectic group is Koszul in the stable limit, partially answering a question of Hain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.