Abstract

The Late-Cretaceous Catalao I contains stockworks of thin dykes of phoscorite-series rocks, which can be subdivided into P1 (olivine-bearing, phoscorites) and P2/P3 (olivine-lacking, nelsonites). Dolomite carbonatites (DC) are intimately associated with nelsonites, as pockets and dykes. The P2 apatite nelsonite, the P3 magnetite nelsonite, and, to a lesser extent DC, host the Catalao I niobium mineralization. C–O isotopes signatures in carbonates reveal several distinct magmatic and post-magmatic processes. Limpid carbonates with stable isotopic mantle-like composition show Rayleigh fractionation and are interpreted as primary, while those with brittle-turbid aspect, and higher oxygen isotope composition, probably underwent recrystallization by interaction with H2O-rich fluids. A group of samples shows higher oxygen compositions and lower carbon values, which could be explained by degassing of carbonatite magma during cooling. A degassing pattern, parallel to magmatic degassing but at higher oxygen and lower carbon compositions, observed in carbonate veins, may indicate degassing of fracture filling fluids. Furthermore, C–O isotopes of carbonate from monazite-bearing carbonatite have a positive correlation, indicating a distinct, late-stage carbo-hydrothermal event. Though the Catalao I nelsonites and phoscorites are of igneous origin, they underwent several post-magmatic events, which sometimes overprinted partially or entirely the magmatic isotope signature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.