Abstract
Animal body size exhibits rapid responses to environmental variations and displays considerable variability across ecological scales, significantly influencing ecological community assembly. However, our understanding of the extent of body size variation and its responses to environmental differences within soil fauna remains limited, impeding a comprehensive grasp of soil fauna's functional ecology. Here, we aim to investigate the magnitude of intrageneric body size variation and its implications for soil nematode community assembly along an altitudinal gradient. We examined soil nematode body size responses along an altitudinal gradient spanning from 3136 to 4128 m in an alpine mountain region of the eastern Tibetan Plateau. We assessed the contributions of intra- and intergeneric variations in body size, both within and among communities, using individual body size values. The implications of these variations for community assembly processes were determined through phenotypic variance ratios employing permutation tests. Our analyses did not reveal statistically significant correlations between altitude and the community-weighted mean body mass, regardless of considering intrageneric trait variation (IGTV). Approximately 15% of the variation in body size among communities and a substantial 72% of the variation in body size within communities can be attributed to IGTV. Altitude did not significantly affect IGTV within or among communities. Furthermore, our results underscored the dominant role of internal filtering within the community in governing nematode community assembly, with external filtering outside the community playing a limited role within our altitudinal range. Our findings emphasize the dominant role of body size variation within communities rather than among communities, attributable to strong internal filtering processes. These findings advance our understanding of body size variation in soil nematodes across ecological scales and highlight the pivotal role of intrageneric variation in shaping the functional ecology of soil fauna.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have