Abstract

In this paper, we consider the heat flow for Yang–Mills connections on $\mathbb{R}^5 \times SO(5)$. In the $SO(5)$-equivariant setting, the Yang–Mills heat equation reduces to a single semilinear reaction-diffusion equation for which an explicit self-similar blowup solution was found by Weinkove [“Singularity formation in the Yang-Mills flow”, Calc. Var. Partial Differential Equations, 19(2):211–220, 2004]. We prove the nonlinear asymptotic stability of this solution under small perturbations. In particular, we show that there exists an open set of initial conditions in a suitable topology such that the corresponding solutions blow up in finite time and converge to a non-trivial self-similar blowup profile on an unbounded domain. Convergence is obtained in suitable Sobolev norms and in $L^{\infty}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.