Abstract

This paper studies the numerical solutions of semilinear parabolic partial differential equations (PDEs) on unbounded spatial domains whose solutions blow up in finite time. There are two major difficulties usually in numerical solutions: the singularity of blow-up and the unboundedness. We propose local absorbing boundary conditions (LABCs) on the selected artificial boundaries by using the idea of unified approach (Brunner et al., SIAM J Sci Comput 31:4478---4496, (2010). Since the uniform fixed spatial meshes may be inefficient, we adopt moving mesh partial differential equation (MMPDE) method to adapt the spatial mesh as the singularity develops. Combining LABCs and MMPDE, we can effectively capture the qualitative behavior of the blow-up singularities in the unbounded domain. Moreover, the implementation of the combination consists of two independent parts. Numerical examples also illustrate the efficiency and the accuracy of the new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.