Abstract

AbstractSurface‐active and highly stable cobalt nanoparticles generated from alkali ion‐promoted gold catalyst for catalyzed carbonylative [2+2+1] cyclization reaction, is described. The gold nanoparticle‘s (AuNPs) role was assumed to dissociate the CO and H2 into atomic species on the catalyst surface by spillover, which in‐situ reduces the robust mesoporous cobalt oxide to metallic cobalt (Co3+→Co2+→Co), as the active catalytic species that catalyzed the reaction; thereby providing up to 93 % yield of cyclopentenone adducts. Prior to this, catalyst pre‐treatment with H2 gas (130 °C, 3 h, 20 atm) was performed to reduce the catalyst. It appeared that the low reducibility temperature and increased surface basicity ascribed to the presence of alkali ion‐promoters in the catalyst revealed a strong correlation with the catalyst activity, for the intra‐ and intermolecular reactions under milder reaction conditions. Thus, a sustainable, highly reusable, and environmentally friendly green catalyst for the carbonylation reaction, such as Pauson‐Khand, was developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.