Abstract
The In-Se phase diagram was redetermined using DTA, x-ray analysis, optical microscopy, TEM, and scanning electron microscopy. In9Se11 and In5Se7 are stable phases at stoichiometric composition and βIn2Se3 was observed at 59.6 at % Se. ΒIn2Se3 decomposes at 198 °C into γIn2Se3 and In5Se7. Alloy melts between 33 and 54 at.% Se exhibit a strong tendency for undercooling. Between 50 and 60 at. % Se, the InSe, In6Se7, or In2Se3 phases solidify directly from the undercooled melt, and the formation of In5Se7 and In9Se11 is suppressed while applying cooling rates between 2 to 10 K/min. The respective undercooled states and metastable phase equilibria are provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have