Abstract

We study, analytically and numerically, the dynamical behavior of the solutions of the complex Ginzburg–Landau equation with diffraction but without diffusion, which governs the spatial evolution of the field in an active nonlinear laser cavity. Accordingly, the solutions are subject to periodic boundary conditions. The analysis reveals regions of stable stationary solutions in the model’s parameter space, and a wide range of oscillatory and chaotic behaviors. Close to the first bifurcation destabilizing the spatially uniform solution, a stationary single-humped solution is found in an asymptotic analytical form which turns out to be in very good agreement with the numerical results. Simulations reveal a series of stable stationary multi-humped solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.