Abstract
The stability of metal halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) is crucial for their practical applications. In this paper, perovskite NCs were synthesized in situ in lead-based metal-organic frameworks (Pb-MOFs: [Pb2(1,3,5-HBTC)2(H2O)4]·H2O), and we obtained stable and bright luminescence composites with different colors. Namely, CsPbBr3@Pb-MOF composites were created by the in situ growth of CsPbBr3 crystals (NCs) on Pb-MOF, which had high ion resistance, bright photoluminescence (PL), and excellent stability. The composites still had bright luminescence after 11 months of storage. The PL intensity of green-emitting CsPbBr3@Pb-MOF composites was increased compared with as-prepared CsPbBr3 NCs. Bright and stable blue- and red-emitting CsPbX3@Pb-MOF composites were obtained by adjusting the amount of PbX2 (X = Cl, Br, and I) in the synthesis process. These CsPbX3 NCs were homogeneously distributed in Pb-MOF substrates. The growth of CsPbX3 NCs in Pb-MOFs prevented NC aggregation and decreased surface defects against nonradiative recombination during emitting. Thus, the PL lifetime and stability were improved. Furthermore, white light-emission diodes were prepared using three color CsPbX3@Pb-MOF composites with Commission Internationale de I'Eclairage color coordinates of (0.296, 0.316). This result provided an efficient way to overcome the limitation of chemical solution synthesis and improve the stability of CsPbX3 NCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.