Abstract

Cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) have attracted enormous attention because of their great potential for optoelectronic applications, such as light-emitting diodes (LEDs). However, the photoluminescence and surface ligands of CsPbX3 NCs have a great impact on their device applications. Herein, we report a molecular superacid of bis(trifluoromethane)sulfonimide (TFSI), which could boost the photoluminescence in the metal halide perovskite nanocrystals. In particular, the photoluminescence quantum yield (PLQY) of CsPbI3 nanocrystals could be greatly improved from 28.6% to near 100% with the superacid treatment. The improved PLQY in CsPbX3 nanocrystals is mainly contributed from the surface passivation based on the characterizations. The CsPbX3 nanocrystals were further modified with PMMA, which could greatly improve their stability while preserving high photoluminescence and good dispersion. The use of superacid combined with a polymer for improving the photoluminescence and stability in CsPbX3 provides an alternative strategy for optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.