Abstract

Organic–inorganic hybrid perovskites in combination with the hole‐transport material (HTM) 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluoren (spiro‐OMeTAD) yield impressive power conversion efficiency (PCE) in n–i–p perovskite solar cells (PSC). To ensure sufficient hole extraction from the perovskite absorber to the metal electrode, the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) doping is considered indispensable to promote spiro‐OMeTAD oxidization and obtain consequently enhanced conductivity. However, LiTFSI‐doped spiro‐OMeTAD usually leads to a reduced stability of PSCs because of the hygroscopic nature of LiTFSI, which further limits its potential commercialization. Herein, a hydrophobic material, namely perfluoropolyethers (PFPEs), is used as surface modifier of doped HTM to improve both efficiency and stability of PSCs. It is revealed that the introduction of PFPE increases the concentration of positive radicals, enhances charge‐carrier transport, and improves stability of PSCs under wetting stress. Moreover, the device based on PFPE achieves a champion PCE of 21.94%. In these findings, valuable insights are provided for the future commercialization of PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.