Abstract

Li- and Mn-rich xLi2MnO3 ∙(1−x)LiMO2 (M = Mn, Ni, Co) layered oxides cathode materials are known to exhibit high specific capacities ≥ 250 mAhg−1 on the high-voltage operation above 4.6 V vs. Li/Li+,1,2 which are considered as promising cathode materials for achieving advanced high-energy density lithium-ion batteries. The capacity of these cathode materials can increase by increasing the charge cut-off voltage. However, the limited anodic instability of the conventional carbonate-based organic electrolytes above 4.2 V vs. Li/Li+ makes the attainment of high capacity from Li-rich layered oxide cathode material difficult. In order to mitigate the electrolyte issue, we have been developing new functional electrolyte components with high anodic stability above 4.6 V to stabilize high-voltage interface between Li-rich layered oxide cathode and electrolyte.1,2 High-voltage electrochemical and cathode-electrolyte interfacial studies and their correlation to high-voltage cycling performance would be presented in the meeting. Acknowledgements This research was supported by Ministry of Trade, Industry & Energy (R0004645) and Creative Human Resource Development Consortium for Fusion Technology of Functional Chemical/ Bio Materials of BK Plus program by Ministry of Education of Korea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.