Abstract

Metallic 1T-MoS2 with high intrinsic electronic conductivity performs Pt-like catalytic activity for hydrogen evolution reaction (HER). However, obtaining pure 1T-MoS2 is challenging due to its high formation energy and metastable properties. Herein, an in situ SO4 2--anchoring strategy is reported to synthesize a thin layer of 1T-MoS2 loaded on commercial carbon. Single Pd atoms, constituting a substantial loading of 7.2wt%, are then immobilized on the 1T-phase MoS2 via Pd─S bonds to modulate the electronic structure and ensure a stable active phase. The resulting Pd1/1T-MoS2/C catalyst exhibits superior HER performance, featuring a low overpotential of 53mV at the current density of 10mAcm-2, a small Tafel slope of 37mVdec-1, and minimal charge transfer resistance in alkaline electrolyte. Moreover, the catalyst also demonstrates efficacy in acid and neutral electrolytes. Atomic structural characterization and theoretical calculations reveal that the high activity of Pd1/1T-MoS2/C is attributed to the near-zero hydrogen adsorption energy of the activated sulfur sites on the two adjacent shells of atomic Pd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.