Abstract

Single-atomic or cluster-based precious metals provide an effective pathway to minimize the cost of catalysts. However, its stability at large current density is still a major hurdle to satisfy practical requirements for electrocatalytic Hydrogen evolution reaction (HER). Herein, we successfully anchored Pt single atoms (Pt SAs) in the oxygen vacancies (Ovac) of Molybdenum dioxide (MoO2) as advanced HER electrocatalyst. Experimental and theoretical calculations results reveal that the Ovac can not only stabilize Pt SAs, but also modulate the electronic structure of the active site, enabling Pt SAs/MoO2 to exhibit superior HER activity in a wide pH electrolyte at large current density. Especially, the 1.1 wt% Pt SAs/MoO2 deliver ultralow overpotentials (9.3, 14, and 16 mV at 10 mA cm−2) and small Tafel slopes (28.78, 36.86, and 65.18 mV dec-1) in acidic, alkaline, and neutral electrolytes, respectively. Moreover, it displays significantly enhanced mass activity of up to 28, 32, and 56 times compared to the benchmark 20 wt% Pt/C catalyst, and outstanding long-term durability (~200 h) at large current density of −1000 mA cm−2. The significantly improved HER performances are mainly ascribed to the synergistic catalytic effects of between Pt SAs and Ovac in MoO2. These impressive findings can provide insights into the rational design of electrocatalysts that used for future clean energy utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.