Abstract
In cardiac gene therapy to improve contractile function, achieving gene expression in the majority of cardiac myocytes is essential. In preventing cardiac arrhythmias, however, this goal may not be as important since transduction efficiencies as low as 40% suppressed ventricular arrhythmias in genetically modified mice with catecholaminergic polymorphic ventricular tachycardia. Using computational modeling, we simulated 1-, 2-, and 3-dimensional tissue under a variety of conditions to test the ability of genetically engineered nonarrhythmogenic stabilizer cells to suppress triggered activity due to delayed or early afterdepolarizations. Due to source-sink relationships in cardiac tissue, a minority (20%-50%) of randomly distributed stabilizer cells engineered to be nonarrhythmogenic can suppress the ability of arrhythmogenic cells to generate delayed and early afterdepolarizations-related arrhythmias. Stabilizer cell gene therapy strategy can be designed to correct a specific arrhythmogenic mutation, as in the catecholaminergic polymorphic ventricular tachycardia mice studies, or more generally to suppress delayed or early afterdepolarizations from any cause by overexpressing the inward rectifier K channel Kir2.1 in stabilizer cells. This promising antiarrhythmic strategy warrants further testing in experimental models to evaluate its clinical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.