Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac disease characterized by arrhythmias under adrenergic stress. Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for CPVT. We characterized electrophysiological properties of CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying different mutations in RYR2 and evaluated effects of carvedilol and flecainide on action potential (AP) and contractile properties of hiPSC-CMs. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion (E3D) and L4115F mutation in RYR2. APs and contractile movement were recorded simultaneously from the same hiPSC-CMs. Differences in AP properties of ventricular like CMs were seen in CPVT and control CMs: APD90 of both E3D (n = 20) and L4115F (n = 25) CPVT CMs was shorter than in control CMs (n = 15). E3D-CPVT CMs had shortest AP duration, lowest AP amplitude, upstroke velocity and more depolarized diastolic potential than controls. Adrenaline had positive and carvedilol and flecainide negative chronotropic effect in all hiPSC CMs. CPVT CMs had increased amount of delayed after depolarizations (DADs) and early after depolarizations (EADs) after adrenaline exposure. E3D CPVT CMs had the most DADs, EADs, and tachyarrhythmia. Discordant negatively coupled alternans was seen in L4115F CPVT CMs. Carvedilol cured almost all arrhythmias in L4115F CPVT CMs. Both drugs decreased contraction amplitude in all hiPSC CMs. E3D CPVT CMs have electrophysiological properties, which render them more prone to arrhythmias. iPSC-CMs provide a unique platform for disease modeling and drug screening for CPVT. Combining electrophysiological measurements, we can gain deeper insight into mechanisms of arrhythmias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.